Load and Combine Data From Multiple Samples
combineSamples.Rd
Given multiple data frames stored in separate files,
loadDataFromFileList()
loads and combines them into a single data frame.
combineSamples()
has the same default behavior as
loadDataFromFileList()
,
but possesses additional arguments that allow the data frames to be filtered,
subsetted and augmented with sample-level variables before being combined.
Usage
loadDataFromFileList(
file_list,
input_type,
data_symbols = NULL,
header, sep, read.args
)
combineSamples(
file_list,
input_type,
data_symbols = NULL,
header, sep, read.args,
seq_col = NULL,
min_seq_length = NULL,
drop_matches = NULL,
subset_cols = NULL,
sample_ids = NULL,
subject_ids = NULL,
group_ids = NULL,
verbose = FALSE
)
Arguments
- file_list
A character vector of file paths, or a list containing
connections
and file paths. Each element corresponds to a single file containing the data for a single sample.- input_type
A character string specifying the file format of the sample data files. Options are
"rds"
,"rda"
,"csv"
,"csv2"
,"tsv"
,"table"
. See details.- data_symbols
Used when
input_type = "rda"
. Specifies the name of each sample's data frame within its respective Rdata file. Accepts a character vector of the same length asfile_list
. Alternatively, a single character string can be used if all data frames have the same name.- header
For values of
input_type
other than"rds"
and"rda"
, this argument can be used to specify a non-default value of theheader
argument toread.table()
,read.csv()
, etc.- sep
For values of
input_type
other than"rds"
and"rda"
, this argument can be used to specify a non-default value of thesep
argument toread.table()
,read.csv()
, etc.- read.args
For values of
input_type
other than"rds"
and"rda"
, this argument can be used to specify non-default values of optional arguments toread.table()
,read.csv()
, etc. Accepts a named list of argument values. Values ofheader
andsep
in this list take precedence over values specified via theheader
andsep
arguments.- seq_col
If provided, each sample's data will be filtered based on the values of
min_seq_length
anddrop_matches
. Passed tofilterInputData()
for each sample.- min_seq_length
Passed to
filterInputData()
for each sample.- drop_matches
Passed to
filterInputData()
for each sample.- subset_cols
Passed to
filterInputData()
for each sample.- sample_ids
A character or numeric vector of sample IDs, whose length matches that of
file_list
.- subject_ids
An optional character or numeric vector of subject IDs, whose length matches that of
file_list
. Used to assign a subject ID to each sample.- group_ids
A character or numeric vector of group IDs whose length matches that of
file_list
. Used to assign each sample to a group.- verbose
Logical. If
TRUE
, generates messages about the tasks performed and their progress, as well as relevant properties of intermediate outputs. Messages are sent tostderr()
.
Details
Each file is assumed to contain the data for a single sample, with observations indexed by row, and with the same columns across samples.
Valid options for input_type
(and the corresponding function used to
load each file) include:
"rds"
:readRDS()
"rds"
:readRDS()
"rda"
:load()
"csv"
:read.csv()
"csv2"
:read.csv2()
"tsv"
:read.delim()
"table"
:read.table()
If input_type = "rda"
, the data_symbols
argument specifies the
name of each data frame within its respective file.
When calling combineSamples()
, for each of sample_ids
,
subject_ids
and group_ids
that is non-null, a corresponding
variable will be added to the combined data frame; these variables are named
SampleID
, SubjectID
and GroupID
.
References
Hai Yang, Jason Cham, Brian Neal, Zenghua Fan, Tao He and Li Zhang. (2023). NAIR: Network Analysis of Immune Repertoire. Frontiers in Immunology, vol. 14. doi: 10.3389/fimmu.2023.1181825
Author
Brian Neal (Brian.Neal@ucsf.edu)
Examples
# Generate example data
set.seed(42)
samples <- simulateToyData(sample_size = 5)
sample_1 <- subset(samples, SampleID == "Sample1")
sample_2 <- subset(samples, SampleID == "Sample2")
# RDS format
rdsfiles <- tempfile(c("sample1", "sample2"), fileext = ".rds")
saveRDS(sample_1, rdsfiles[1])
saveRDS(sample_2, rdsfiles[2])
loadDataFromFileList(
rdsfiles,
input_type = "rds"
)
#> CloneSeq CloneFrequency CloneCount SampleID
#> file1.1 TTGAGGAAATTGC 0.1064411838 428 Sample1
#> file1.2 GGAGATGAATTGG 0.2467047998 992 Sample1
#> file1.3 GTCGGGTAATTGG 0.1178811241 474 Sample1
#> file1.4 GCCGGGTAATTC 0.4794827157 1928 Sample1
#> file1.5 GAAAGAGAATCGG 0.0494901766 199 Sample1
#> file2.6 AAACACGAATTCG 0.3801916933 1428 Sample2
#> file2.7 ACAAAAGAATTC 0.0002662407 1 Sample2
#> file2.8 AGGAAAGAATTG 0.1589456869 597 Sample2
#> file2.9 CGAGAAGAATTGC 0.0878594249 330 Sample2
#> file2.10 GAAAAAAAATTC 0.3727369542 1400 Sample2
# With filtering and subsetting
combineSamples(
rdsfiles,
input_type = "rds",
seq_col = "CloneSeq",
min_seq_length = 13,
drop_matches = "GGG",
subset_cols = "CloneSeq",
sample_ids = c("id01", "id02"),
verbose = TRUE
)
#> Loading sample 1...
#> Input data contains 5 rows.
#> Removing sequences with length fewer than 13 characters...
#> Done. 4 rows remaining.
#> Removing sequences containing matches to “GGG”...
#> Done. 3 rows remaining.
#> Loading sample 2...
#> Input data contains 5 rows.
#> Removing sequences with length fewer than 13 characters...
#> Done. 2 rows remaining.
#> Removing sequences containing matches to “GGG”...
#> Done. 2 rows remaining.
#> CloneSeq SampleID
#> id01.1 TTGAGGAAATTGC id01
#> id01.2 GGAGATGAATTGG id01
#> id01.5 GAAAGAGAATCGG id01
#> id02.6 AAACACGAATTCG id02
#> id02.9 CGAGAAGAATTGC id02
# RData, different data frame names
rdafiles <- tempfile(c("sample1", "sample2"), fileext = ".rda")
save(sample_1, file = rdafiles[1])
save(sample_2, file = rdafiles[2])
loadDataFromFileList(
rdafiles,
input_type = "rda",
data_symbols = c("sample_1", "sample_2")
)
#> CloneSeq CloneFrequency CloneCount SampleID
#> file1.1 TTGAGGAAATTGC 0.1064411838 428 Sample1
#> file1.2 GGAGATGAATTGG 0.2467047998 992 Sample1
#> file1.3 GTCGGGTAATTGG 0.1178811241 474 Sample1
#> file1.4 GCCGGGTAATTC 0.4794827157 1928 Sample1
#> file1.5 GAAAGAGAATCGG 0.0494901766 199 Sample1
#> file2.6 AAACACGAATTCG 0.3801916933 1428 Sample2
#> file2.7 ACAAAAGAATTC 0.0002662407 1 Sample2
#> file2.8 AGGAAAGAATTG 0.1589456869 597 Sample2
#> file2.9 CGAGAAGAATTGC 0.0878594249 330 Sample2
#> file2.10 GAAAAAAAATTC 0.3727369542 1400 Sample2
# RData, same data frame names
df <- sample_1
save(df, file = rdafiles[1])
df <- sample_2
save(df, file = rdafiles[2])
loadDataFromFileList(
rdafiles,
input_type = "rda",
data_symbols = "df"
)
#> CloneSeq CloneFrequency CloneCount SampleID
#> file1.1 TTGAGGAAATTGC 0.1064411838 428 Sample1
#> file1.2 GGAGATGAATTGG 0.2467047998 992 Sample1
#> file1.3 GTCGGGTAATTGG 0.1178811241 474 Sample1
#> file1.4 GCCGGGTAATTC 0.4794827157 1928 Sample1
#> file1.5 GAAAGAGAATCGG 0.0494901766 199 Sample1
#> file2.6 AAACACGAATTCG 0.3801916933 1428 Sample2
#> file2.7 ACAAAAGAATTC 0.0002662407 1 Sample2
#> file2.8 AGGAAAGAATTG 0.1589456869 597 Sample2
#> file2.9 CGAGAAGAATTGC 0.0878594249 330 Sample2
#> file2.10 GAAAAAAAATTC 0.3727369542 1400 Sample2
# comma-separated values with header row; row names in first column
csvfiles <- tempfile(c("sample1", "sample2"), fileext = ".csv")
utils::write.csv(sample_1, csvfiles[1], row.names = TRUE)
utils::write.csv(sample_2, csvfiles[2], row.names = TRUE)
loadDataFromFileList(
csvfiles,
input_type = "csv",
read.args = list(row.names = 1)
)
#> CloneSeq CloneFrequency CloneCount SampleID
#> file1.1 TTGAGGAAATTGC 0.1064411838 428 Sample1
#> file1.2 GGAGATGAATTGG 0.2467047998 992 Sample1
#> file1.3 GTCGGGTAATTGG 0.1178811241 474 Sample1
#> file1.4 GCCGGGTAATTC 0.4794827157 1928 Sample1
#> file1.5 GAAAGAGAATCGG 0.0494901766 199 Sample1
#> file2.6 AAACACGAATTCG 0.3801916933 1428 Sample2
#> file2.7 ACAAAAGAATTC 0.0002662407 1 Sample2
#> file2.8 AGGAAAGAATTG 0.1589456869 597 Sample2
#> file2.9 CGAGAAGAATTGC 0.0878594249 330 Sample2
#> file2.10 GAAAAAAAATTC 0.3727369542 1400 Sample2
# semicolon-separated values with decimals as commas;
# header row, row names in first column
utils::write.csv2(sample_1, csvfiles[1], row.names = TRUE)
utils::write.csv2(sample_2, csvfiles[2], row.names = TRUE)
loadDataFromFileList(
csvfiles,
input_type = "csv2",
read.args = list(row.names = 1)
)
#> CloneSeq CloneFrequency CloneCount SampleID
#> file1.1 TTGAGGAAATTGC 0.1064411838 428 Sample1
#> file1.2 GGAGATGAATTGG 0.2467047998 992 Sample1
#> file1.3 GTCGGGTAATTGG 0.1178811241 474 Sample1
#> file1.4 GCCGGGTAATTC 0.4794827157 1928 Sample1
#> file1.5 GAAAGAGAATCGG 0.0494901766 199 Sample1
#> file2.6 AAACACGAATTCG 0.3801916933 1428 Sample2
#> file2.7 ACAAAAGAATTC 0.0002662407 1 Sample2
#> file2.8 AGGAAAGAATTG 0.1589456869 597 Sample2
#> file2.9 CGAGAAGAATTGC 0.0878594249 330 Sample2
#> file2.10 GAAAAAAAATTC 0.3727369542 1400 Sample2
# tab-separated values with header row and decimals as commas
tsvfiles <- tempfile(c("sample1", "sample2"), fileext = ".tsv")
utils::write.table(sample_1, tsvfiles[1], sep = "\t", dec = ",")
utils::write.table(sample_2, tsvfiles[2], sep = "\t", dec = ",")
loadDataFromFileList(
tsvfiles,
input_type = "tsv",
header = TRUE,
read.args = list(dec = ",")
)
#> CloneSeq CloneFrequency CloneCount SampleID
#> file1.1 TTGAGGAAATTGC 0.1064411838 428 Sample1
#> file1.2 GGAGATGAATTGG 0.2467047998 992 Sample1
#> file1.3 GTCGGGTAATTGG 0.1178811241 474 Sample1
#> file1.4 GCCGGGTAATTC 0.4794827157 1928 Sample1
#> file1.5 GAAAGAGAATCGG 0.0494901766 199 Sample1
#> file2.6 AAACACGAATTCG 0.3801916933 1428 Sample2
#> file2.7 ACAAAAGAATTC 0.0002662407 1 Sample2
#> file2.8 AGGAAAGAATTG 0.1589456869 597 Sample2
#> file2.9 CGAGAAGAATTGC 0.0878594249 330 Sample2
#> file2.10 GAAAAAAAATTC 0.3727369542 1400 Sample2
# space-separated values with header row and NAs encoded as as "No Value"
txtfiles <- tempfile(c("sample1", "sample2"), fileext = ".txt")
utils::write.table(sample_1, txtfiles[1], na = "No Value")
utils::write.table(sample_2, txtfiles[2], na = "No Value")
loadDataFromFileList(
txtfiles,
input_type = "table",
read.args = list(
header = TRUE,
na.strings = "No Value"
)
)
#> CloneSeq CloneFrequency CloneCount SampleID
#> file1.1 TTGAGGAAATTGC 0.1064411838 428 Sample1
#> file1.2 GGAGATGAATTGG 0.2467047998 992 Sample1
#> file1.3 GTCGGGTAATTGG 0.1178811241 474 Sample1
#> file1.4 GCCGGGTAATTC 0.4794827157 1928 Sample1
#> file1.5 GAAAGAGAATCGG 0.0494901766 199 Sample1
#> file2.6 AAACACGAATTCG 0.3801916933 1428 Sample2
#> file2.7 ACAAAAGAATTC 0.0002662407 1 Sample2
#> file2.8 AGGAAAGAATTG 0.1589456869 597 Sample2
#> file2.9 CGAGAAGAATTGC 0.0878594249 330 Sample2
#> file2.10 GAAAAAAAATTC 0.3727369542 1400 Sample2
# custom value separator and row names in first column
utils::write.table(sample_1, txtfiles[1],
sep = "@", row.names = TRUE, col.names = FALSE
)
utils::write.table(sample_2, txtfiles[2],
sep = "@", row.names = TRUE, col.names = FALSE
)
loadDataFromFileList(
txtfiles,
input_type = "table",
sep = "@",
read.args = list(
row.names = 1,
col.names = c("rownames",
"CloneSeq", "CloneFrequency",
"CloneCount", "SampleID"
)
)
)
#> CloneSeq CloneFrequency CloneCount SampleID
#> file1.1 TTGAGGAAATTGC 0.1064411838 428 Sample1
#> file1.2 GGAGATGAATTGG 0.2467047998 992 Sample1
#> file1.3 GTCGGGTAATTGG 0.1178811241 474 Sample1
#> file1.4 GCCGGGTAATTC 0.4794827157 1928 Sample1
#> file1.5 GAAAGAGAATCGG 0.0494901766 199 Sample1
#> file2.6 AAACACGAATTCG 0.3801916933 1428 Sample2
#> file2.7 ACAAAAGAATTC 0.0002662407 1 Sample2
#> file2.8 AGGAAAGAATTG 0.1589456869 597 Sample2
#> file2.9 CGAGAAGAATTGC 0.0878594249 330 Sample2
#> file2.10 GAAAAAAAATTC 0.3727369542 1400 Sample2
# same as previous example
# (value of sep in read.args overrides value in sep argument)
loadDataFromFileList(
txtfiles,
input_type = "table",
sep = "\t",
read.args = list(
sep = "@",
row.names = 1,
col.names = c("rownames",
"CloneSeq", "CloneFrequency",
"CloneCount", "SampleID"
)
)
)
#> CloneSeq CloneFrequency CloneCount SampleID
#> file1.1 TTGAGGAAATTGC 0.1064411838 428 Sample1
#> file1.2 GGAGATGAATTGG 0.2467047998 992 Sample1
#> file1.3 GTCGGGTAATTGG 0.1178811241 474 Sample1
#> file1.4 GCCGGGTAATTC 0.4794827157 1928 Sample1
#> file1.5 GAAAGAGAATCGG 0.0494901766 199 Sample1
#> file2.6 AAACACGAATTCG 0.3801916933 1428 Sample2
#> file2.7 ACAAAAGAATTC 0.0002662407 1 Sample2
#> file2.8 AGGAAAGAATTG 0.1589456869 597 Sample2
#> file2.9 CGAGAAGAATTGC 0.0878594249 330 Sample2
#> file2.10 GAAAAAAAATTC 0.3727369542 1400 Sample2